Polígonos
Como ya sabes las figuras geométricas son parte de nuestra vida cotidiana, están en las señales de calles y caminos, en los embaldosados de los pisos, en los cubrimientos de paredes y en muy diversos tipos de objetos. Los artistas de todos los tiempos han utilizado figuras geométricas en sus trabajos.
Las figuras geométricas planas cerradas reciben el nombre de polígonos. El estudio de las características de estas figuras ha ocupado a los filósofos y matemáticos desde la Antigüedad, y posee numerosas aplicaciones prácticas en la medida de superficies y en la generación de modelos geométricos complejos.
Polígonos estrellados
|
Si se une cada vértice del polígono con el siguiente, dando una sola vuelta a la circunferencia, el polígono obtenido se denomina convexo. Si la unión de los vértices se realiza, de forma que el polígono cierra después de dar varias vueltas a la circunferencia, se denomina estrellado. Si al dividir una circunferencia en partes iguales unimos los puntos de división de dos en dos, de tres en tres, etc. y al cerrarse la poligonal hemos recorrido la circunferencia un número entero de veces, obtenemos un polígono regular estrellado.
Para averiguar si un polígono tiene construcción de estrellados, y como unir los vértices, buscaremos los números enteros, menores que la mitad del número de lados del polígono, y de ellos los que sean primos respeto a dicho número de lados. Por ejemplo: para el pentágono (5 lados), los números menores que la mitad de sus lados son el 2 y el 1, y de ellos, primos respecto a 5 solo tendremos el 2, por lo tanto podremos afirmar que el pentágono tiene un único estrellado, que se obtendrá uniendo los vértices de 2 en 2 .
Para averiguar si un polígono tiene construcción de estrellados, y como unir los vértices, buscaremos los números enteros, menores que la mitad del número de lados del polígono, y de ellos los que sean primos respeto a dicho número de lados. Por ejemplo: para el pentágono (5 lados), los números menores que la mitad de sus lados son el 2 y el 1, y de ellos, primos respecto a 5 solo tendremos el 2, por lo tanto podremos afirmar que el pentágono tiene un único estrellado, que se obtendrá uniendo los vértices de 2 en 2 .
Se denomina falso estrellado aquel que resulta de construir varios polígonos convexos o estrellados iguales, girados un mismo ángulo, es el caso del falso estrellado del hexágono, compuesto por dos triángulos girados entre sí 60º.
Heptágonos regulares estrellados Podemos construir dos heptágonos regulares estrellados uniendo las divisiones de 2 en 2 y otro de 3 en 3. |
Octógono regular estrellado
|
Aurora García Benedito, 2000, polígonos.
http://cerezo.pntic.mec.es/~agarc170/paginas/p_estrellados.htm 25-10-2013.
que beatiful
ResponderEliminar